首页> 外文OA文献 >Scene Particles: Unregularized Particle Based Scene Flow Estimation
【2h】

Scene Particles: Unregularized Particle Based Scene Flow Estimation

机译:场景粒子:基于不规则粒子的场景流估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, an algorithm is presented for estimating scene flow, which is a richer, 3D analogue of Optical Flow. The approach operates orders of magnitude faster than alternative techniques, and is well suited to further performance gains through parallelized implementation. The algorithm employs multiple hypothesis to deal with motion ambiguities, rather than the traditional smoothness constraints, removing oversmoothing errors and providing signi?cant performance improvements on benchmark data, over the previous state of the art. The approach is ?exible, and capable of operating with any combination of appearance and/or depth sensors, in any setup, simultaneously estimating the structure and motion if necessary. Additionally, the algorithm propagates information over time to resolve ambiguities, rather than performing an isolated estimation at each frame, as in contemporary approaches. Approaches to smoothing the motion ?eld without sacri?cing the bene?ts of multiple hypotheses are explored, and a probabilistic approach to Occlusion estimation is demonstrated, leading to 10% and 15% improved performance respectively. Finally, a data driven tracking approach is described, and used to estimate the 3D trajectories of hands during sign language, without the need to model complex appearance variations at each viewpoint.
机译:在本文中,提出了一种估计场景流的算法,该算法是光流的更丰富的3D模拟。该方法比替代技术的运行速度快了几个数量级,非常适合通过并行实现进一步提高性能。该算法采用多个假设来处理运动歧义,而不是传统的平滑度约束,从而消除了过平滑的误差,并在基准数据上提供了优于现有技术的显着性能改进。该方法是灵活的,并且能够在任何设置下与外观和/或深度传感器的任何组合一起操作,并在必要时同时估计结构和运动。另外,该算法会随着时间传播信息以解决歧义,而不是像现代方法那样在每个帧上执行隔离的估计。探索了在不牺牲多个假设的益处的情况下平滑运动场的方法,并展示了一种用于遮挡估计的概率方法,分别使性能提高了10%和15%。最后,描述了一种数据驱动的跟踪方法,该方法用于估计手语期间手的3D轨迹,而无需对每个视点的复杂外观变化建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号